
2BTs'I
/ ¢ 3

ALGORITHMS FOR THE AUTOMATIC GENERATION OF 2-D STRUCTURED

MULTI-BLOCK GRIDS

Thilo SchSnfeld

CERFACS

42, avenue Gustave Coriolis

F-31057 Toulouse Cedex

France

Per Weinerfelt

Department of Mathematics

LinkSping University

S-581 83 LinkSping
Sweden

Carl B. Jenssen

Dep. of Industrial Mathematics
SINTEF - SIMa

N-7034 Trondheim

Norway

SUMMARY

Two different approaches to the fully automatic generation of structured multi-block grids in two

dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of

a multiple block grid topology. The first approach is based on an advancing front method commonly used

for the generation of unstructured grids. The original algorithm has been modified toward the generation

of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the

global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is

then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to

practical problems is demonstrated for typical geometries of fluid dynamics.

INTRODUCTION

Structured multi-block grids are distinguished by regular quadrilateral cells (hexahedras in 3-D) which

allow to obtain solutions of good accuracy. However, this high degree of regularity is too stiff when considering

geometrical complex shapes. The direct mapping of the physical domain onto one single computational
domain becomes increasingly complicated. The discretized domain must be partitioned into a set of sub-

domains. For each of the resulting so-called blocks a grid is generated separately. The first step in the

generation of such a multi-block grid is the definition of the block topology. An overall structure for the

arrangement of the blocks, together with internal connectivity information and local coordinate orientations

must be set up. Traditionally the block topology is set up manually, a pre-processing task that can quickly

become difficult with rising complexity. This led us to the idea of replacing the user interactivity by an

automatic generation of the blocks. Examples for references on techniques for the automatic meshing of

quadrilateral grids are those of [2] or [8].

The aim of this work is to develop methods for generating structured multi-block meshes automat-

ically in order to reduce the amount of pre-processing required for multi-block calculations. Multi-block

solvers can then be applied to complex geometries with almost the same level of flexibility as solvers based

on unstructured methods. Our original interest is to provide meshes for problems in fluid dynamics, but

automatic mesh generators are highly demanded in many other fields.

The overall idea behind our first block-generation method is to combine the advantages of a struc-

tured multi-block grid with a technique commonly used to generate unstructured grids. In an unstructured

environment the rigidity of the structured (i,j)-index system is broken and replaced by a system of pointers.

Since the generation of an unstructured grid is done locally, and since only a 'single block' is required for a

complex configuration, no special topology needs to be defined. We propose a block generation algorithm

561

that is based on the advancing front technique (AFT), which has been applied e.g. by Peraire et al. [6] or

LShner et al. [5] to generate small triangular elements (that directly form the final grid cells). Here, we use

the advancing front technique to generate large elements that serve as blocks and thus have to be covered by

mesh lines in order to obtain the final computational grid. The basic ideas behind the AFT algorithm are

retained, with the exception of two principal modifications: Firstly, we create quadrilaterals instead of the

originally generated triangles and, secondly, we generate blocks of maximal possible size rather than small

grid cells. Compared to the basic AFT for triangles, the present algorithm for the generation of rectangular

elements is more complicated, partly because of attempts made to ensure robustness and the prevention of

distorted elements. The additional computational costs are easily justifiable, since much less elements are

required compared to a complete unstructured mesh.

Earlier results with an application of AFT as a multi-block generator are presented in [1], where

so-called 'micro-blocks' are created by forking triangles in an unstructured triangular mesh. However, this

technique results in skewed blocks which degrades the accuracy of a flow calculation on the resulting meshes.

It therefore seems advantageous to replace the triangular elements by the direct generation of quadrilat-

eral blocks. This modified AFT-approach for the generation of quadrilaterals instead of triangles was first

presented in [7] and is in the following referred to as 'method 1'. Although fully automatic, both of these

AFT-approaches are based on underlying unstructured techniques. The drawback with these methods is

that the topology is difficult to control which might lead to undesirable effects on the grid.

These shortcomings led us to the second approach ('method 2') [3], which, instead of building blocks

as with AFT, is based on a successive partitioning of the domain of interest. This permits a better control

of the topology. With this approach, the initial computational domain is successively sub-divided, until each

sub-domain (block) is considered acceptable, according to certain criteria, for the generation of a structured

mesh. The desired properties of such a block are for example that it should consist out of four corners where

each corner should be as close as possible to a right angle. The partition procedure consists of first flagging

boundary nodes as cut required, cut permitted or cut not permitted (corner node) and then chosing an optimal

cut between two nodes. The success of this algorithm depends on the definition of the function measuring

the quality of a cut. Though there are obviously several choices for this function, they all have to take into

account various criteria such as the number of corners in the created sub-domains or the total number of

boundary nodes still requiring a cut.

METItOD 1: THE ADVANCING FRONT METHOD

The advancing front technique has obtained its name from a 'front' that 'advances' (travels) through

the domain of discretization. This front, often referred to as the actual or current front, is defined as a closed

curve of assembled line segments which changes continuously during the generation process. After each cycle

of the algorithm one (or several) elements are generated, often by the simultaneous creation of a new grid

point. A description of the underlying philosophy of our modified AFT-algorithm is given hereinafter.

AFT for Rectangles

Background grid: The so-called background grid, used for interpolation purposes only, is created

interactively and consists of large triangles which cover the complete domain of discretization (Fig. 1). At

the vertices of each triangle, stretching parameters are stored. These values are user-defined before the

generation process starts and enable the block size to vary throughout the domain. If desired, blocks of

equal size can be obtained by using the same value at all the vertices. The information required at any point

562

in the domainis thenobtainedby linear interpolationof the stretchingvaluesat the vertices. In orderto
facilitate the creationof the backgroundgrid and to minimizethe searchingand interpolationprocedures,
the numberof elementsis keptassmallaspossible.

Figure1: Backgroundgrid for multi-elementairfoil.

Surface discretization: Unlike for the triangular AFT [6], in the present method the background grid

is not employed for the discretization. Since large blocks are generated rather than the final mesh, a relative

coarse approximation of the solid surfaces is sufficient.

In a standard application of the block generator, solid surfaces are discretized by equally-spaced

points. These nodes belong to the final grid, and few of them are actually used in order to obtain a coarse

discretization. In an alternative approach, all of these points are used to describe the geometry, thus leading

to a much improved approximation of the solid surfaces. The supposed disadvantage of the latter technique

for the purpose of the block generation is neutralized by the method of merging neighboring faces.

Initial front: By means of the background grid the starting front is set up. This consists of contiguous

nodes on given discretized curves connected by straight lines. These line segments (in the following notation

called 'faces') are referenced by integer arrays, with two indices describing the start and end-point of the face.

In order to enable the use of one single closed curve (once the parts of the front that are initially separated

are connected), the line segments on interior surfaces are stored in clockwise orientation (defined by the

order in which the data is entered), while the faces on exterior boundaries are oriented in a counter-clockwise

direction (or vice versa). The strict preservation of this rule throughout the entire generation process is an

essential part of the algorithm.

The Block Generation Algorithm

Compared to the generation algorithm for triangles, a large number of additional requirements are

needed to control the automatic generation procedure. The robustness of the algorithm is one of the major

considerations. The algorithm consists of the following principal steps, which are partially identical with

those of the traditional triangle algorithm:

(i) As in the triangle algorithm, a choice is made for all initial base for the next element to be generated.

The 'smallest length' criterion is used.

(ii) Next, the important means to merge faces comes into effect. The angle fl between the chosen initial

basis and the faces next to it (on both ends) are checked. The initial base-line, together with the

563

facesthat are to be merged,form the final basiswith end-pointsA and B (Fig. 2). The pointers

that indicate the positions of the adjacent nodes are then examined. In case AB belongs to a closed

polygon with maximal six corners that cannot be sub-divided into two quadrilaterals, the items (iii) to

(vi) listed below are skipped and the new element is set up directly.

(iii) The third major step is to find the position of the two ideal points COA and CoB. By 'ideal' we denote

that point which is chosen if nolle of tile nodes of the current front is selected. One ideal point for

each the start and end-point of the basis has to be found. Since this task is more difficult compared

to tile standard AFT algorithm (with only one ideal node per element), below we give a more detailed

description.

(iv) When the ideal points COA and CoB have been selected, we determine all the potential nodes Ci that

belong to the actual front and which tie inside a circle of given radius r, with center Coa (reasonable

value r = 1.7 x 6A). For reasons of simplicity, we restrict our attention to the point A; the procedure

for B is analogous. The coordinates of the flagged points are ordered according to their distance from

point COA; four 'reserve' nodes CR are added to the end of the list.

(v) In this step, tile connecting point CA (CB for point B) is determined. This point must satisfy all of

the requirements described below.

(vi) Once a valid point has been designated for both nodes A and B, a new quadrilateral element is defined

by the vertices A, B, CB and CA. Four principal configurations are possible and the correct one has

to be determined.

(vii) After the definition of a new element, the corresponding pointers are updated and the number of

remaining faces is checked. If any faces remain, the whole procedure is repeated by starting at item

(i); if none remain, the block generation is terminated.

51
D,

f "'-

f "" •

] %,

82

Figure 2: General notation for rectangle algorithm.

Face merging: This tool to reduce the number of blocks is one of the essential ingredients incorporated

into our advancing front algorithm. Two neighboring faces may be merged to form one long face whenever the

564

anglefl between them is 'smooth', i.e. close to 180 ° (Fig. 3). The use of angles (which are non-dimensional)

allows to circumvent the (heuristic) definition of the delicate threshold parameter that is necessary when

working with the curvature (which depends on the geometric scaling of the configuration).

Typical values that define a smooth angle lie between 160 ° and 200 °, although these threshold values

may be chosen close to 180 ° at solid walls. Note that not only the base side may consist of several merged

faces, but also the remaining three sides of each element. Indeed, the combination of faces opposite to the

basis has been found to be efficient.

A

final basis

initial basis

Figure 3: Face merging.

Finding the ideal points: For each end-point A and B of the final basis, two ideal points must be

selected. Different principal strategies are used depending on whether the angle a between the base side AB

and its neighbors is smaller or larger than 130 °. This heuristic value, as well as all the other characteristic

angles, has proved to be the most efficient when developing the program (efficient in terms of both algorithm

robustness and general validity for any given configuration). We distinguish between the following cases

(Fig. 4):

(i) c_ > 130 ° : The angle is large enough to be sub-divided without creating skewed elements. One new

point is set up. The stretching length _ of the vector ACoA is obtained from the background grid. The

vector direction again depends on a:

----,

(a) 130 ° < c_ _< 250°: The angle is divided into two equal halves, i.e. the direction of ACOA is the

mean value of the normal directions to AB and AD, where D denotes the other node adjacent to

A on the present front.

(b) c_ > 250°: A sub-division into two halves would lead to skewed blocks. The adjacent face is then
_____.-,

disregarded and ACOA is chosen to be orthogonal to AB.

(ii) a_<_

The

:130 ° : Again, the subdivision into two halves would lead to an element with a distorted shape.

nearest neighbor of A is chosen a,s an ideal point; the length of AD is a given length 6.

Since we generate quadrilateral elements, no limitation on the stretching length 6 is necessary (con-

trary to the classical AFT). Long stretched blocks are allowed.

Criteria for point validation: Ill this section we give a survey of the criteria to be satisfied by a point

(', in order to be a valid node CA.

(i) The point under consideration ('A does nol belong to any of the merged faces that form the base edge.

565

(i)(a)

Figure4: (heckmgof angles.

(ii) Ill tile casewhenthe point (r' '_ iS <)1_¢_Of the neighboring nodes, ltw, angle a must not be too large. This

check is perforlned in a successive way for all the contiguous points of A.

(iii) The angle between AB and .;|('A obeys 50 ° < ./IIA(':t <_ 130 °.

(iv) The triangle _13A('.l has a po>ilivv area, i.e I)oin_ (',4 li-_ ill 11: _ inim'ior of the domain, llere the

strict maintenance of lhe orienlali_m l)lays air iml)Ol'iant role. This condition corresponds to the first

requirenient of the standard A t"T algorilhm.

(v) The second well-known criterion of the classical AI:T approach c]iecks for any intersections of the line

ACA with existing faces. Note that crossings with all existing faces must be exaniined, not just those

with edges on the currel_t front.

These tests are carried out for the ttagged points o1" I)oth elid-no¢h's .4 and f1 of the basis. The list of

reserve points guarantees that at least one nodo fultills all of these five condilious. Since the check for node

B follows that for A, the designated node ('A i> alr,'adv t<i,)wn. ..\dditiolml validity requirements must be

imt)osed on point ('B:

(vi) Trivial: Node ('/_ must lit, it ll_' i&'nlical willt ('._.

(vii) There must be no intersvclions bvlw<,eIi l ll<' l)C_lential lira' ('A('_ and any of the existing edges.

Creation of a new elol,i_,l,l: l)urin<e; _),t_' "<luadvai,gulali_II" slop _'xactlv ,me II('W ('lt'lll('llt iS _Uil(,liltOd.

This characteristic feat iii'_, _.l[1]i_' alg;_lIi111 ill Iil_li]lt <iiiis ;t (1_';1r st lllcl ii rl, I'l_r I h_' _',11('i,11 ioll plOtoss. The typo

of this element is dc,,lorniili,,'d hv lho l,:iiill <_t lli,' lil'W ii,_l]'", ('/ ;llill (':¢. In lit,' f,)ll<_wilig, wo de_cl'il)o lho

princil)al ('Ollfiglll'alilJll,,, It1_'11<';111;lI)ll+'<lr (',"+'l'i'-t..5t

(i) In the ideal caso, oiie iiew nodo is placed in tho d_lniaill for _,ilhor liode ..1 and I]. Three new faces are

fornled, t>OililS ('4 and ('H are identical wilh ('ol alid ('oH. respectivoly (or one of the l'esel've nodes}.

566

(]i)

(iii)

(iv)

If a neighbor of A (or B) is found, a new point is chosen for /3 (o1 .4). One new node and two faces

are created. Tile faces that fol'm tile side ACA are deleted froln the actual front. In the special case

when an adjacent node has been chosen for both A and /3, no new poinl is set u I) and the connection

line CACB forms one new side.

If (as in the previous case) one neighbor of A has been chosen, 1)ul the point ('_ is located on another

part of the front, no new node is set up, and one new side is creale(l. All the faces that form ACA are

removed from the current front, as well as the faces between CA and CB. Similarly for point B. In the

special case when both CA and CB are located on another part of the front, but neither is a neighbor

of either A or B, no new node but two new sides are defined.

In the final case, an element with either quadrilateral, pentagonal, or hexagonal shape is chosen. The

reason for the implementation of this special case was to reduce the computational costs by avoiding

the node validation verifications. Starting at the base side, all lhe faces thai form the polygon are
discarded.

For all of the cases mentione(t above, the faces which form the base side are removed from the list

of actual front faces. The new faces are added to the current front, hereby conserving the strict orientatiolt
rule.

(i) ideal case C B (ii) CB

B

C

CA= D

(iii)

(iv)

C_ special case \

CA= D _"_A _A

C B

l"igure 5: Potential new eh, menls.

'Ill,* l)oint¢,r,"4\sl_'lll

The data structure of the present block e:,n¢,ralo Vml)h)ys a poinler system. Two pointers are

necessary to keep track of the bh)ck gelml';tlion process. The tirsl relates the nodes to lhe element faces.

For each face, this array contains: in its tirsl p¢>i_ion, lhe illdex of the starl point" in the second position,

OF! N.AL, ts 567

the end-point;ill a third position, the faceboundaryconditiontype is stored. A secondpointercontains
the inverseinformationandlinks the facesto tile nodes(lhough this is no longerof importancewhenthe
correspondingfaceisdeletedfl'om tile actual fronl).

Additional pointers are required to provide the necessary information for both the mesh generator

and the flow solver (note that these pointers are independent of tile block generation procedure and thus are

not essential for the algorithm). All element-to-face pointer relates the faces to the four block sides. In a

strict rule faces 1,2 and 3,4 are pairs of opposile faces of each elemenl. The inverse pointer links the elements

to the faces. The third output pointer is the face-to-node pointer. F'inally, the fourth pointer stores the

number of merged poillts on solid wall faces (this information is necessary for the mesh generator).

Block Generator Post-Processing

The automatic generalion procedure usually gives a larger lltl]llberof blocks than desired, since tile

robustness of the algorithm is deemed to I),, IllOl'(' ilnl)orlant than creating as few t'l,'iilenls as possible.

For this reason, a. 1)ost-pl'ocessing routine has b(,on d(,velolwd. .\ftvr vi(,wing I1,, data given by the })lock

generator, neighl)oring blocks nlav be inerged lilalkuallv. TI,' see(rod prillcipal l)urpose of post-processing is

to initialize the munbm" of grid l)oilkls pvl' bib)ok-side.

METIIOI) 2: I)IVII)I: ANI) (:ONQI!EI{

The second of our methods has I)evn developed with the eXlWl'ience gained by the previous approach

and is based on a divide-and ('ol,q'u_r paradigm.

Btc)(Tk Generation I)\, Su('('essi\'(' l)olnaill l)avtilioning

The basic idea 1)ehin<l this techlli/lu(' is lo successively t)allilion a given dolnain inlo sub-domains

until all sub-domains are acct'l)lal)h' for mesh g(,neralion, according to certain critel'ia. This princil)le is

illustrated by tile recursive dirt<l(, and COlV,lll('l" I)lo<'k creation procedure, createblock, writtelt ill a pseudo

language:

procedure createblock(dora at l,);

if (domain not a block)

% partition the domain into subdomain 1 and subdomail_ 2

partition(domain, sul)donlai_l l.sub(l(,Inaill 2):

createblock(su bdom ain 1):

createblock(>lll)doiilaill 2):

end

end procedure

As can be seen from Ill(. code. we need a (leti,iliol, of a block and a l)arlilioll l)roceduve. The criteria

detining a block should ideally 1)e based on malhemalical pri,.:il)les relaled to eg. the shape of the domain.

Since it might be difficult 1o find a l),Ol)('r formulali(,,_, w,, },av(. il,sl('ad chose,L heurislic crileria mimicking

thos(' used ill all inleractiv(, l)lo(k g,.n(,ralion ._,ssi(),l. T},' (t(,.,il>,l t>r,)l,'rli('s of a I)lock are h(,nce:

568

(i) A block should have four corners.

(ii) Each corner should be as close to a right angle as possible.

(iii) Each side should have a limited curvature.

(iv) The area of the block should be as large as possible.

The main reason for considering these is that they support the generation of high quality meshes by

simple mesh generation algorithnls like transfinite interpolation and elliptic smoothing. We need, however,

to modify items (i)-(iv) slightly in order to obtain robust criteria for the block partitioning, llere, robust

means that the algorithm should terminate after a finite number of steps, i.e. any given domain should be

split into a finite number of blocks. Criteria (i)-(iv) are also involved in the procedure of deciding if and

how to subdivide a given domain, i.e. the main part of the partition procedure. Before formulating the final

block criteria and the partition procedure, we start by introducing some notations and definitions.

The input data to the createblock routine is a 2-D domain with a boundary which is a closed polygonal

curve with positive orientation as shown in Fig. 6.

Figure 6: Sample domain.

First all vertices of tile polygon, i.e. boundary nodes, are flagged. The flagging options are cut

required (cr), cut permitted (cp) and cut not permitted (cnp). The first and foremost criteria when flagging

the nodes is the size of the angle c_ between two neighboring line segments as shown in Fig. 7.

cut not permitted cut permitted cut required

Figure 7: Flagging of nodes based on the angle.

569

Let fl be a predefined fixed angle, 0 </_ < _r/2, then a node is marked as cr if a fulfills a < -(-_ - _).-- -- -- 2

7r 7r

If -(_ -/3) < a < 7 -/3 the node is marked as cp. Finally, when a >_ _ - fl the node is marked as cnp.
A cnp node is also called a corner. Furthermore we need to introduce tile notation accumulated curvature.

The accumulated curvature between two corners is defined as the sum of the absolute value of the angles

a. The reason for using this notation is that property (iii) above suggests a limitation of the curvature of a

block side. ttence tile accumulated curvature is computed for all nodes along tile boundary and each time it

exceeds a multiple of a predefined angle 7 the actual node is marked as cr {see Fig. 8).

Figure 8: Flagging of nodes based on the accumulated curvature.

We can now proceed defining the modified criteria of a block. As mentioned above the final blocks

should ideally have the desired properties (i)-(iv). Some of these are included ill the partitioning algorithm,

as will be seen later, and hence not be applied explicitly. The following criteria fox"a block are finally chosen:

(i) A block has 3, 4, or 5 corners.

(ii) A block does not contain any node flagged as cr.

The first requirement ensures that the blocking procedure terminates after a finite number of steps.

This might not be the general case if we only allow blocks with four corners. As illustrated in Fig. 10 triangles

and pentagons cannot be partitioned into quadrilaterals with a single cut, without splitting the corners, since

splitting such blocks result in at least one new block with same number of corners. Thus obtaining a domain

with three or five corners has to be accepted as a. block in order to terminate the splitting of the domain. If

a domain is not accepted as a. block, it is passed t.o the partition procedure fox' flu'ther subdivision. We will

now continue the description of the partition procedure. First, a set. of points, between which a cut can be

performed, has to be prescribed. The cul will here be restricted to the set of boundary nodes. Among all

possible cuts only allowed cuts are considered. By an 'allowed' cut we mean a cut between a node marked

as cr and acr or cp node. The best cut is finally selected frOth the set of allowed cuts. Hence a domain,

which is not a block, need to have at least one cr node in order to be split. If no such node exists the node

corresponding to the smallest angle o is re-flagged to a cr node. Finally, additional boundary nodes, flagged

as cp, are inserted to ensure an alnple amount of possible cuts to chose fl'om. These nodes are chosen such

that no line segment is longer than a predefined characteristic length, l._c,,l¢, and so that there is at least one

cp node between two cnp nodes.

We now proceed, by describing how to seloct the l>st cut among all legitimate cuts. The success

of tile algorithnl depends crucially on the delinition o[" I)osl cut. Following the approach of Talbert and

570

Parkinsson[9],wedefine'best cut' asthat cut whichminimizesa functionmeasuringthe quality of thetwo
newdomainscreatedby the cut. This function is chosenasa linear combinationof terms measuringthe
anglesbetweenthe cut andthe boundary,thedistancefl'omthecut to the boundary,thenumberof corners
in the resultingsubdomains,and whetheror not both nodesdefiningthe cut are flaggedas cr. Thus our
function f is defined as:

f = 11210 + w28 + t03??,c + "w4/" (1)

where wl, w2, w3, and w4 are non-negative weights and

0 = min 1_/_- n/21 (2)
n=--l,0,1

s = max (0, (ls_t_ - l)/lsc_l¢) (3)

1 if number of corners = 3 or 5 in either of the two blocksnc = 0 otherwise (4)

1 if only one node is flagged crr = 0 if both nodes are flagged cr (5)

The angle measure (2) tends to encourage cuts that intersects the boundary either at an approximately

right angle, or that makes a smooth transition from boundary to cut. For clearity, this is illustrated in Fig. 9.

l
Figure 9: Preferred angles between boundary and cut.

The distance measure (3) is designed to avoid excessively thin blocks. Itere the paranleter lsc_t¢ is a

typical length scale. The corner count (4) has the purpose of avoiding domains with three or five corners.

The final measure (5) encourages cuts between two nodes that both are flagged as cr. This is intended to

reduce the total number of cuts that has to be performed.

Finally, before the generated block topology can be passed to the mesh generator, it must be post-

processed so that all blocks have four sides. This is achieved by a re-flagging of nodes wherever necessary.

This re-flagging is again based on the angle between neighboring line segments as shown in Fig. 7. For

571

Figure 10: Subdivision of triangles and pentagons.

pentagons the corner node with the smallest angle is ignored, while for triangles, the node with the largest

angle not already defined as a corner, is flagged as a corner. Note, that only the definition of corners or sides

changes, while the actual shape of the block remains unchanged.

The output from the block generator then consists of blocks as shown in Fig. 11. Each block has

four sides, where each can be sub-divided into a number of edges. The different edges correspond to differ-

ent boundary conditions. All boundary conditions, except internal boundaries (i.e. boundaries which are

shared by two blocks), are supplied by the input geometry. For internal boundaries the condition is defined

simultaneously with the creation of new intel'nal edges.

side 1

side 4

edge 8 edge 7

edge 1 edge3 !

edge 4 edge 2 ;

o edg'e 5o ¢

side 3

side 2

Figure 11: Inforlnation created by the block generator.

M[Lq I-BLO(,Ix I_IESII (,ENI-;I1ATION

The second part in the multi-block generation method consists of generating a structured mesh in

each block. This part is common to both of the methods described above and the same mesh generation tool

is used. Before a, mesh can be generated, additional information has to be created by a block-grid generator

interface.

572

Tile Block-Grid Generator Interface

The blockgeneratorprovidestopologyinformationin the form of node-coordinate,edge-node,and
edge-side-blockregisterstogetherwith the typeof boundaryconditiononeachedge.Fromthesepointersall
necessaryinformationfor thegrid generatorcanbeobtained. Part of the data canbe useddirectly while
othersareretrievedfrom an interfaceprogram.

Beforegeneratingthemeshthenumberandthetypeof boundaryconditions,theconnectivityto other
blocksandthe numberof grid pointsoneachof the four blocksidesmustbedetermined.The crucialtaskis
to computethe numberof grid pointson tile edgesfrom whichweget the numberon the blocksides.If the
blocksaremeshedcompletelyindependentof its neighborsthis is trivial. Then for eachblock anarbitrary
numberof pointscanbespecifiedin thetwolocalcoordinatedirections.This, however,resultsin blockswith
discontinuousgrid linesat the boundaries.Wepreferinsteadto workwith patchedblockswith coincident
grid lines. This meansthat the numberof pointsoneachedge,under the constrainsdescribedbelow,have
to becomputed.This is, for anarbitrary blocktopology,a non-trivial task. After someattemptsto do this
interactively,wedecidedinsteadto formulatethe problemin a mathematicalframework,asa optimization
problem,and solveit by a.well knowntechnique.

To start with, let ni denote the number of points on edge nulnber i. For each block the following
equations hold:

Y_ieEl,b(ni- 1) = _i6E2,b(_i- 1)

iEUa,b(?Zi - 1)-_iEE4,b(Tli- 1)
(6)

where Ek,b is the set of edges belonging to side k in block b. These are the compatibility equations

which guarantee the same number of grid points on the corresponding block sides 1,2 and 3, 4. For a solid

wall edge ni is governed by the nulnber of points, :Vi, in the geometry description. To ensure that ni is not

less than Ni we impose the constraint Ni _< 7,i. For the remaining edges we need lower and upper bounds,

Li and Ui on ni i.e. Li <_ ni <_ Ui. The nulnbers Li and Ui can be specified directly by the user or generated

from a given grid point density flmction. The problem is now to find a solution to the underdetermined

system (6) with the constraints above. Among all feasible solutions we want a solution which does not lead

to unnecessary many grid points. Hence, it is reasonable to look for the solution which minimizes the total

sum (or a weighted sum) of grid points. The final mathematical formulation then reads:

for all blocks

_-'_iEEl,b(71i- 1)= _iEE2,b(?Ii- 1)

_iEE,,6(*ti- 1} = _iEE4,6(7_i- 1)

ni > Ni i solid wall face,

Li <_ ni <_ Ui i not solid wall face, ni integer

This is a linear integer proglamming problem which is solved by a standard technique based on branch
and bounds.

573

If a globalsmoothingof the meshis desireda searchfor singularpoints is alsonecessary.All the
singularnodesarestoredin all array togetherwith their neighborpoints andtreatedin a specialwayby
thesmootherasdescribedin the nextsection.The blockdatastructureusedby theelliptic smootheris the
sameasfor a multi-blockflow solverwhichmeansthat flowcalculationscanbedoneimmediatelywhenthe
meshand theblock dataareavailable.

Grid Generation

The output from the meshgeneratoris a structuredgrid in eachblock, with coincidentgrid lines
on the interfacesbetweentwo blocks. As mentionedin the previoussection,an alternativeapproach,not
consideredin this work, is to allow the numberand positionof thesegrid pointsto vary independentlyin
eachblock. This techniquemaypreventgrid spreading,but needsa moresophisticatedflowsolverwhich
includesconservativeinterpolationroutines.

Theinitial meshisgeneratedby linearor herlnitiantransfiniteinterpolation.This givesoftena good
start grid due to the featureof the topologygeneratorwhichprovidesblockswith rectangularshapeand
without strongcurvature. The meshquality is then fltrther improved.The meshis first stretchedin the
directionnormalto solidwallboundaries.Theresultingmeshwill thenbetter resolvethe flowin theseareas.
Themeshis thensmoothedby solvingthe wellknownelliptic equations(cf. Thompsonet al. [11]):

(r)

where (x,y) and (_,71) are coordinates in the physical and computational plane respectively, a =

x,_2+ y2n, /3 = x_x, 7 + y_y_, 7 = x_'2+ y_ and J = x_iy,_ - x,_y_.

Following the technique suggested by Thomas and Middlecoff [10], the source terms P and Q are

computed on the block boundaries and extended to the interior by linear interpolation.

pQ

along the boundaries

along the boundaries

71= constant

= constant

(8)

tlence, the distribution of the boundary poinls spreads into the interior of the block. Finally, system

(7) is discretized and solved iteratively bv means of the .]acol)i method. We are mainly interested in applying

this technique in order to smooth the grid. It'. however, there is a need for solving the equations colnpletely,

a lnulti-grid technique can be applied as air olaf.ion, lit order to speed up the convergence.

A special smoothing procedure is used for the singular points, llere, tile mesh is smoothed iteratively

by a discrete version of the undivided Laplacian operator:

574

/=1

where superscript n denotes the iteration counter, r-'k is the singular I)oint, r'i, i = 1, ..., Np its neigh-

bors and co a relaxation parameter (0 _< _: _< 1).

RESULTS - COMPARISON OF METHODS

The two algorithms for the automatic generation of multi-block topologys are presented with the help

of four different configurations. The generic configuration of a collection of four circles of different radius

provides a first challenging test for the second of our methods. In Fig. 12 the global topology with 16 blocks

and the final mesh are shown. The overall grid is characterized by a few non-smooth cells at the intersection

of the blocks. Here singular points are created, which require special attention by the flow solver algorithm.

The double profile represents tile first test case for method 1. Fig. 13 shows the global mesh topology

consisting of 36 blocks. The overall topology type for this airfoil-flap configuration is a C-mesh, which is

fairly well followed by the block structure. A close-up of this block topology together with the final mesh is

given in Fig. 14. We note the smooth distribution of grid points (though the overall mesh is very coarse).

Two-dimensional mesh generation can also be used for axi-symmetric problems. As all example, we

have meshed a valve-cylinder assembly which represents the first case to which both of our methods are

applied. The blocks generated for this simplified internal flow configuration are depicted in Fig. 15. Method

1 generates nine original blocks (where some of tlmm could be merged afterwards), while method 2 creates

six blocks. While the shapes of the blocks in the valve i)art are similar, their topology in the cylinder part

differs substantially. This difference, although not crucial, is transmitted to the meshes (Fig. 16).

A high-lilt multi-element airfoil configuration represents the final test case. This geometry is the

most difficult among our configurations due to the presence of several different length scales as well as strong

curvature on the boundary. The present configuration is characterized by a main profile, a slat and two

flaps that render a structured single-block generation quite impossible. The global C-type block topology for

method 1 (75 blocks) and method 2 (21 blocks) is displayed in Fig. 17. The two approaches give substantially

different arrangements of the blocks. With the divide-and-conquer method large blocks are generated that

can extend from the surface of the airfoils to the far-field boundary of the domain. These large blocks are

not obtained with the AFT-algorithm, which creates by far more blocks (where, again, some of them can be

merged afterwards). The global meshes are displayed in Fig. IS. The underlying block topology becomes

evident. Again, as with tile generic circle configuration, with ntethod 2 singular points can occur at block

intersections. For a better look at the geometry a close-up of these block distributions is given in Fig. 19.

We note the good clustering of a small number of blocks for method 2 in the region close to the airfoils. A

similar view in Fig. 20 shows the computational grids. Finally, in Fig. 21 the solution of the Euler equations

using the cell-centered multi-block solver of [4] on the mesh generated by method 2 is given. The figure

shows the computed Mach number field for a fi'ee-stream Mach nulnber of 0.1.5 and 10° angle of attack.

CONCLITDING REMARI,:S

Two different approaches for the automal ic generalion of the block toI)ology of structured multi-block

575

grids are presented. Both methods have been successfully applied to different geometries.

The first approach is based on an advancing front method. Compared to the original algorithm

for triangles, the present method for the generation of rectangular elements is more complicated, partly

because of attempts made to ensure robustness and tile prevention of distorted elements. The additional

computational costs are easily justifiable, since much less elements are created than for the generation of a
completely unstructured mesh.

One of the major criticism leveled at the AFT is the background grid, which prevents the advancing

front technique from being entirely automatic. A certain alnount of user experience (or trial and error

labour) is required to first place the vertices of the background grid triangles at the right locations and

next to allocate suitable stretching parauleters to these nodes. In our opinion tile background grid needs

to be replaced by a more automatic method, which provides the information about tile element size. This

information could for example be obtained from the curvature of the surface descl'iption. Further, robustness

of the algorithm is not always guaranteed, due to the heuristics involved in keeping the algorithm stable and

to enable its general a pl)lication for a wide a range of contigurations. Blocks need to be merged afterwards,

both in order to reduce their total number and to avoid extrenl differences in the block size. It is desirable

to have a better control over the topology type of tile global grid.

The second of our procedures is based on a divide-and conquer principal. The algorithm basically

consists of first flagging boundary nodes as c,t not pormitted (i.e. a corner), cut req,ired or cut permitted,

and then chosing an optimal cut between two nodes. The success of the algorithm depends on the definition

of the filnction measuring the quality a cut. Obviously, a nunlbe.r of adequate fulictions can be constructed,

and we do not claim having found the best one. It is however our experience that this function has to take

into account the angles of the intersection of the cut with tile boundary, the distance fl'om the cut to tile

boundaries, the number of corners in the created subdomains, as well as the total number of boundary points

still requiring a cut. The non-trivial problem of si)ecifying the nunlber of grid points on each block boundary

can be formulated as a linear integer programming problem. With this approach, the only information that

has to be supplied by' the user is a lower bound for the number of points on a. boundary edge.

A comparison of these two methods reveals better performances achieved with the divide--and-conquer

approach. A smaller number of blocks is generated than with the AFT-method. The better control over

the overall topology allows to cluster blocks in regions of complicated shapes, while at the. salne time only

a few blocks are created away from the body surfaces, llowever, the 1)rol)leln of singular nodes still needs

to be resolved. A fllture continua.lion of this work would thereforo mosl likely be based on method 2. Tile

basic divide-and-conquer l)ri,lcipal applies dir(,cll 5' to t hr0e-dimensioltal problems for realistic configurations.

Modifications of the 2 D algorilh,ns would contprise aspects such as the current way of flagging nodes and

performing the cuts.

llEFERENCI_S

1. Bergman, C.M.: Dcveloppeme7_t & Me thoths A'um_riqucs pour des Ecoulcments llypersoTdques Non-

visqucx Autour d'Engins Spatiaua:, Phi) thesis, ltzstitul National Polytechnique de Toulouse, 1990.

2. Blacker, T.D. and St.el)henson, M.B.: Paving: A New Appt'oach to Automated Quadrilateral Mesh

Generation, hltern. Journal for Num. Nhqh. i,, l:]ngil_eering, 32, pp. 811-847, 1991.

3. Jenssen, C.B. and P. Weinerfelt: Automatic Multi-Block Mesh Generation ill Two Dimensions, SINTEF

576

Industrial Mathematics, Report STF10 A93007, Trondheim, 1993.

4. Jenssen, C.B.: Implicit Multi Block Euler and Navier-Stokes Calculations, AIAA Journal, 32, No 9,

pp. 1808-1814, 1994.

5. LShner, R. and Parikh, P.: Generation of Three-Dimensional Unstructured Grids by the Advancing

Front Method, AIAA-Paper 88-0515, Reno, January 1988.

6. PerMre, J. et al.: Adaptive Remeshing for Compressible Flow Computations, Journal of Comp. Phys.

72, pp. 449-466, 1987.

7. SchSnfeld, T. and P. Weinerfelt, P.: The Automatic Generation of Quadrilateral Multi-Block Grids by

the Advancing Front Technique, in Proceedings of the Third International Conference on Numerical

Grid Generation in Barcelona, pp. 743-754, A. S.-Arcilla, J. H£user, P.R. Eiselnan, and J.F. Thompson

(Eds.), Elsevier Science Publishers, North ttolland, June 1991.

8. Steinthorsson, E. and Ameri, A.A.: Conq)utations of Viscous Flows ill Complex Geometries using

Multiblock Grid Systems, AIAA-Paper 95-0177, Reno, January 1995.

9. Talbert, J.A. and Parkinsson, A.R.: Development of an Automatic Two-Dimensional Finite Element

Mesh Generator using Quadrilateral Elements and Bezier Curve Boundary Definition, in International

Journal for Numerical Methods in Engineering, 29, 1990.

10. Thomas,P.D. and Middlecoff, J.F.: Direct Control of the Grid Point Distribution in Meshes Generated

by Elliptic Equations, AIAA Journal, 18, 1980.

11. Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W.: Numerical Grid Generation: Foundations and

Applications, North-Holland, 1985.

FIGURES

k _\\\\\\\,,_

Figure 12: Global block topology (left) and final mesh for ,l-circle configuration (method 2).

577

Figure 13:Global topologywith 361)locksfox"doubleI)rofile method 1).

I

Figure 14: Close-up of block topology (left) and final mesh fox' double profile (method 1).

1

Figure 15: Valve-cylilMer: global block topolog,v fox' method 1 (left,) and method 2.

578

__ _-WW%WWLLX2\ \\ \ t l t 111

Valve-cylinder: final mesh for method 1 (left,) and method 2.

f_

/
\,

X

-7
/

117 -

/

Figure 17: Multi-elemenl airfoil: global 1}lock topology for method 1 (left} and method 2.

r

Figure 18: ,Xlulti-cl(,m{,nl airf{}il: _l()l),ll ._ri{l f{)r i)l¢qh(}d (h, fl)and i_(,lh{){t "2.

.579

.... I]

;;7-

Figure 19: Multi-element, airfoil: close-up of" block topology for mothod I (left,) and method 2.

Figure 2(1: Multi-element airfoil: close-up of mesh for method 1 (left) and method 2.

F'iguro"21 .\luIli-,:,h,i_,_,l_:.tixf,_)il:51;_chI_uml_oriit,hl for_lolhod2.

580

